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Abstract: Persistent security challenges in Industry 4.0 due to the limited resources of IoT devices
necessitate innovative solutions. Addressing this, this study introduces the ASCON algorithm for
lightweight authenticated encryption with associated data, enhancing confidentiality, integrity, and
authenticity within IoT limitations. By integrating Digital Twins, the framework emphasizes the need
for robust security in Industry 4.0, with ASCON ensuring secure data transmission and bolstering
system resilience against cyber threats. Practical validation using the MQTT protocol confirms
ASCON’s efficacy over AES-GCM, highlighting its potential for enhanced security in Industry 4.0.
Future research should focus on optimizing ASCON for microprocessors and developing secure
remote access tailored to resource-constrained devices, ensuring adaptability in the digital era.
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1. Introduction

In the ever-evolving landscape of the Internet of Things (IoT) and its expanding realms,
the integration of Digital Twins (DTs) has emerged as a transformative concept, promising
enhanced monitoring, analysis, and control of physical assets [1]. However, as the prolifer-
ation of IoT devices continues relentlessly, a critical concern surfaces: ensuring the security
of communication channels between DTs and resource-constrained IoT endpoints [2].

Despite significant advancements, the current body of research on DT security re-
veals notable limitations. Many IoT devices, such as sensors, actuators, and RFID tags,
operate under significant resource constraints, including limited computational power,
memory, and energy reserves [3]. Conventional encryption methods and security mech-
anisms, often relied upon in existing studies, are too computationally demanding and
impractical for these devices. Consequently, there is an urgent demand for a streamlined,
effective, and strong cryptographic algorithm to ensure secure communications to secure
the communication channels between DTs and their resource-constrained counterparts.

A detailed review of existing literature highlights several research gaps. Notably,
there is a lack of focus on verifying the authenticity and integrity of sensor data input
into the DT [2]. While some papers discuss securing data transmission channels, their
reliance on conventional encryption and authentication methods like AES, SHA-256, and
RSA is concerning. These methods are not feasible for deployment on resource-constrained
devices, underscoring the urgent need for lightweight alternatives.

In response to these challenges, this paper introduces a novel cryptographic solution
tailored to the unique demands of the Digital Twin ecosystem. Our objective is to provide a
lightweight, secure communication channel that seamlessly operates between DTs and the
often resource-constrained IoT devices. We aim to achieve a nuanced equilibrium between
robust security and efficient resource utilization, enabling the unhindered flow of critical
data while safeguarding against cyber threats.
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Our proposed solution, grounded in the authenticated encryption with associated
data (AEAD) algorithm ASCON ([4]), offers a promising approach to bridge the security
gap in this dynamic and evolving domain. This paper outlines our journey in addressing
this crucial issue, exploring the existing security landscape in DT applications, identifying
limitations, and proposing an innovative cryptographic algorithm that enhances security
without consuming additional resources on resource-constrained IoT devices.

The structure of the remainder of this paper is as follows: Section 2 undertakes a
comprehensive literature study, shedding light on the existing state of security in Digital
Twin communication and noting challenges and gaps in current solutions. In Section 3 ,
we present our novel, lightweight cryptographic method for ensuring an effective secure
communication channel. Sections 4 and 6 delve into comprehensive performance and secu-
rity evaluations, demonstrating the practicality and resilience of our proposed solution. In
Section 7, we discuss the performance and security analysis results, the scalability of AS-
CON in large-scale IoT applications, and the limitations of the ASCON algorithm. This
paper concludes with Section 8, summarizing major findings, highlighting the signifi-
cance of our solution, and suggesting possible directions for further investigation in this
important area.

2. Literature Review

This section comprehensively reviews the existing literature, encompassing academic
research, industry reports, and practical implementations of secure communication between
DTs and resource-constrained IoT devices. In our previous SLR work [5], we analyzed a
wide array of studies and publications to understand the current state of knowledge in
this domain comprehensively. A critical aspect of our literature review involves assessing
existing solutions and technologies utilized in practice. We evaluated these solutions’
effectiveness, limitations, and real-world applicability in protecting the communication
pathways between Digital Twins and IoT devices with limited resources. Based on our
thorough literature review, we clearly articulated the specific research objectives and
questions that our paper aims to address. These objectives guided our exploration of
novel approaches and the development of a lightweight cryptographic solution tailored to
the needs of this emerging field. It is crucial to establish secure communication between
the physical and digital components to maintain the reliability and security of Digital-
Twin-based systems. These physical IoT components’ computational, power, and storage
limitations must be considered.

In this context, we examined 14 papers that explore data confidentiality, integrity, and
privacy within the Digital Twin ecosystem. Table 1 summarizes the security measures
utilized in the literature.

Table 1. Security Mechanisms for Securing Data in DT and Industrial Internet of Things
Communication [5].

Ref. Security Mechanism(s) Goal(s)

[6] Central access control system based on OAuth and XACML Secure access control

[7] Anonymous communication based on secret handshake scheme
and group signature Unforgeability and conditional traceability (privacy)

[8] Differential privacy techniques Privacy and confidentiality of data

[9] Blockchain and Smart contract-based
Proof-of-Authentication (PoA)

Validate the legitimacy and integrity of data collected from
Industrial Internet of Things nodes.

[10] Blockchain, Smart contract, and Deep learning Integrity of data, detect botnet behavior

[11] Quantum communication technologies Improve overall security of communication between DT and IIoT

[12] Trusted Execution Environment and Unclonable Functions (PUFs) Security and Trustworthiness of communication

[13] Attribute-based Access Control Secure data storage

[14] Blockchain Authenticate data generated from clusters before they are used
in DT

[15] Authorization Blockchain and Storage Blockchain Secure data sharing through authorization
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Table 1. Cont.

Ref. Security Mechanism(s) Goal(s)

[16] Blockchain and SHA-256 hash for chained checksum Increase the security and trustworthiness of sensor readings for
Digital Twin applications.

[17] Blockchain, access control secure transmission protocol Improve the communication security of Internet of Vehicles (IoV).

[18] Framework based on verifiable data register (VDR) and credentials Secure and protect the privacy of data exchange in the Digital
Twin ecosystem.

[19] Attribute-Based Encryption (ABE) and Symmetric
encryption scheme Ensure the secure communication of Digital Twin and IoT.

To address security challenges like communication trust and privacy protection, the au-
thors in [7] introduced a robust framework for secure vehicular digital twin communication.
This framework leveraged anonymous authentication as a key component. The specific
authentication protocol was introduced by the authors, relying on a secret handshake
scheme and group signature to accomplish the goal. This approach effectively addressed
issues related to the authenticity of messages and conditional traceability. The proposed
framework established secure communication channels not only between iTwins (Digital
Twins) and their physical counterparts but also among iTwins themselves.The preservation
of data confidentiality and integrity during transmission was a primary focus.

To address the challenges of data volume, unreliable communication channels, and
security threats in Industrial IoT (IIoT), the authors in [9] proposed an integrated framework
that combines blockchain and Deep Learning (DL). This framework introduces a new DT
model for simulating security-critical IIoT processes and employs blockchain-based data
transmission with smart contracts to ensure data integrity. The DL scheme focuses on
applying an Intrusion Detection System (IDS) to valid data retrieved from the blockchain.
The practical implementation demonstrates substantial improvements in communication
security and data privacy.

In their research [10], the authors focused on enhancing communication security be-
tween IoT devices and DTs. Their approach included implementing a private blockchain
and smart contracts, along with leveraging deep learning techniques to monitor network
traffic. This combination ensured the integrity and security of data transmitted between
physical devices and DTs, preventing unauthorized tampering. Furthermore, their use
of deep learning enabled early detection of botnet behaviors, prompting timely security
responses to isolate compromised devices. This comprehensive strategy effectively bol-
stered communication security and upheld data integrity. In their research [11], the focus
was on enhancing communication security between IIoT devices and DTs using quantum
communication technologies. They proposed a novel channel encryption scheme rooted
in quantum principles, leveraging entanglement states and quantum teleportation. Ad-
ditionally, they introduced an Adaptive Key Residue algorithm based on quantum key
distribution mechanisms. This innovative approach aims to significantly strengthen the
security of communication channels between IIoT devices and DTs.

In their study [13], a robust privacy-preserving scheme tailored for digital twin-based
traffic control was proposed. The scheme operates in two main phases. Firstly, during the
data uploading phase, a group signature technique with time-bound keys was employed
to authenticate data sources, efficiently revoke members, and protect privacy during data
storage on cloud service providers after synchronization with the digital twin. In the
subsequent data-sharing phase, a secure attribute-based access control technique was
utilized to enable flexible and efficient data sharing. Notably, specific subpolicy parameters
are stored during initial decryption, reducing computational complexity for subsequent
data access under the same subpolicy. The paper also includes a theoretical analysis that
validates the security and efficiency of the proposed scheme.

In addressing the security and trustworthiness of communication between the Digital
Twin and physical devices, various technologies and hardware and software solutions were
explored, as discussed in [12]. Device authentication utilized Trusted Execution Environ-
ment platforms and Physically Unclonable Functions (PUFs). Additionally, blockchain
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technology was investigated for its ability to provide secure, immutable, and auditable
data storage for critical exchanged data. In proposing a secure smart manufacturing
framework through the integration of Digital Twin (DT) and blockchain technologies, a
study by [14] aimed to facilitate efficient and secure multiparty collaborative information
processing in heterogeneous IIoT environments. The authentication mode demonstrated
in the paper was found to outperform the standard protocol in terms of time efficiency.
Simulation results were highlighted, although detailed information on other employed
methods was not provided in the paper. Future enhancements to the framework were
suggested, including the potential integration of quantum computing technology to further
improve overall efficiency and security.

In their research [15], the authors introduced a dual-blockchain-based architecture
designed to enhance data security in IoT contexts. This architecture comprised an au-
thorization Blockchain for managing permissions and achieving consensus, alongside a
storage blockchain for securely storing data. Implemented within an IoT system utilizing
Digital Twin technology, the framework aimed to ensure secure data exchange across
physical systems, Digital Twins, and IoT applications. However, the study primarily fo-
cused on data authentication, assuming that data from IoT devices would be encrypted
during transmission.

In their research [16],the authors proposed using the lightweight SHA-256 hash al-
gorithm to create a blockchain of sensor readings. This method aimed to ensure secure
communication between the control center and remote sensors by linking checksums of
current and previous readings, establishing trust based on the unbroken chain length. The
study emphasized that this approach enhances the security and reliability of sensor data in
Digital Twin applications, especially in critical sectors such as the power grid.

In their study [17], a blockchain-based IoV Secure Communication Framework was
proposed to enhance secure communication within the Internet of Vehicles (IoVs). Blockchain
technology was leveraged to securely store essential data such as public keys and communi-
cation history. The framework comprised five core modules: a blockchain network, access
control, secure transmission protocol, vehicle ad hoc, and a mechanism for detecting Sybil
attacks. To address the growing threat of Sybil attacks in IoV scenarios, the framework
employed regular location certificates issued by base stations to verify vehicle location ac-
curacy. This approach aimed to provide an effective solution for improving communication
security in IoV environments.

The SIGNED framework was introduced by [18] to facilitate the secure and verifiable
exchange of Digital Twin data within smart cities. Emphasizing principles of data owner-
ship, selective disclosure, and verifiability through Verifiable Credentials, the framework
encompassed five functional components: Cyber and Physical Layer, Workflow Designer,
Analysis Layer, Traceability Layer, and Digital Wallet. The Traceability Layer, integrated
with a blockchain-based Verifiable Data Registry, was responsible for managing public
credentials and monitoring registered assets. Through a proof of concept in smart water
management, the effectiveness of SIGNED in ensuring trusted and verifiable data exchange
was demonstrated. Overall, enhanced security and privacy were achieved in data sharing
across different functional units within smart city environments.

The work by [19] contributed to enhancing IoT communication security within digital
twin networks. An interference source location scheme featuring a mobile tracker was
proposed to bolster resistance against attacks and improve Attribute-Based Encryption
(ABE). Key exchange security was ensured through access control policies and symmetric
encryption. Addressing observation noise, the paper modified the interference source
location using an unscented Kalman filter. The authors concluded that integrating Jamming
Signal Strength (JSS) information with the unscented Kalman filter algorithm effectively
estimated the interference source location and related state information.
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2.1. Security Mechanisms Analysis from the Literature

Securing the communication channels between Digital Twins and Industrial Internet of
Things (IIoT) deployments is crucial, especially within the critical infrastructure of Industry
4.0. Various research efforts have been undertaken to explore different security mechanisms
aimed at ensuring robust and efficient data communication. This subsection provides a
comparative analysis of these security mechanisms, focusing on their practicality, resource
efficiency, and deployment suitability.

Blockchain (smart contract) technology is widely employed in the existing literature
to ensure privacy and security within the Digital Twin ecosystem. In studies such as those
by [9,10,14–17], proposals have been made for blockchain-based data transmission schemes
to ensure data integrity. However, due to blockchain’s inherent characteristics, the solutions
based on this technology have limitations in providing data confidentiality. While these
approaches enhance data integrity in distributed environments, their computationally
demanding nature may impact their suitability for resource-constrained IoT devices.

Privacy enhancement in the Industrial Internet of Things (IIoT) has been addressed
by three studies [7,8,13,18] through techniques such as secret handshake schemes, group
signatures, and differential privacy methods. These approaches, aimed at improving
privacy, may require significant computational resources for cryptographic operations,
posing challenges for resource-constrained IIoT devices.

Additionally, security mechanisms focusing on access control and trust have been
identified [6,12,13]. The initial study proposes the implementation of a centralized access
control system employing XACML policies and tokens such as SAML and OAuth to govern
access and ensure the security of communications. Another investigation introduces
a secure data sharing scheme utilizing attribute-based access control. The third study
recommends secure data exchange between Digital Twin and Industrial Internet of Things
environments leveraging technologies such as Physical Unclonable Functions (PUF) and
Trusted Platform Modules (TPM). While these approaches demonstrate resource efficiency,
their economic viability may be constrained by the necessity for specialized hardware
configurations and intricate key management.

Lastly, we examined a distinctive study [11] centered on quantum communication and
entanglement. This theoretical proposal may face feasibility challenges in the near term,
given the nascent state of quantum technology development. Quantum communication
offers the potential for highly efficient and robust security measures, albeit its practical
implementation remains challenging due to the requirement for sophisticated hardware.

2.2. Research Gap

From our analysis of the literature, it became clear that many studies gave limited
attention to ensuring the authenticity and integrity of sensor data integrated into Digital
Twins. While a few papers addressed securing data transmission channels, they predomi-
nantly relied on conventional encryption and authentication methods like AES, SHA-256,
and RSA. This gap in the research and proposed solutions is worrisome because field sen-
sors are often constrained by power limitations, making traditional encryption impractical
for securing them. Future research should therefore prioritize lightweight algorithms to
safeguard data confidentiality, integrity, and authenticity in Digital Twin applications.

Despite significant contributions to its development, the use of Digital Twins for secu-
rity in Industry 4.0 remains in its infancy, with several research gaps awaiting exploration
and enhancement. This section identifies and explores three potential research areas.

• Efficient lightweight encryption algorithms are anticipated to be crucial for the ad-
vancement of Digital Twin technology, enabling precise replication of physical objects
and processes. Achieving this precision requires deploying numerous small, resource-
constrained IoT sensors on a large scale to monitor various aspects of the physical
status being replicated. This scenario highlights the necessity for future research to de-
velop and deploy encryption algorithms optimized for resource-constrained devices.
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• Remote access control for DT: Secure remote access control to the virtual counterpart
of an ICS component for troubleshooting and testing by vendors is identified as a
gap in the literature. In traditional industrial setups, vendors of ICS components
have remote access control to physical objects for maintenance and operational tasks.
However, the mechanisms for managing such access in the context of Digital Twins
are not well-defined. Future research should explore methods to securely enable
remote access to one or more components of the DT, addressing potential security and
operational challenges inherent in virtualized industrial environments.

• Human–computer interaction: Future research could consider exploring the human–
computer interaction (HCI) aspect of DT technology. This includes investigating how
DT models are interacted with by users and exploring novel methods to enhance user
experience. Enhancing the HCI aspect of DT technology may potentially improve
model accuracy and reliability by reducing human errors.

3. Proposed Solution

Low-power and resource-constrained IIoT devices are incapable of running traditional
cryptographic schemes, such as AES, SHA-256, and RSA. Regardless, these devices are
widely used for various Industry 4.0 applications across a range of industry sectors, such
as manufacturing, transportation, health, and power grids. Moreover, with the emergence
of DT in Industry 4.0, Industrial Internet of Things sensors are an integral part of Digital
Twin technology, in which they are used to collect and send data over wired or wireless
channels. Hence, it is crucial to secure the communication between DTs and the Industrial
Internet of Things, taking into consideration the limited resources they have. In light of
the challenges and the gap mentioned in Section 2.2, our proposed solution delves into the
heart of this matter, recognizing the urgency to establish a secure communication channel
that bridges the physical devices in IIoT applications with their mapped Digital Twins.
This section presents innovative approaches, focusing on lightweight algorithms tailored
to preserve data confidentiality, integrity, and authenticity. By addressing this critical need,
we aim to not only enhance the security posture of IIoT applications but also unlock the
full potential of Digital Twin technology. In this work, we proposed a resource-efficient
communication scheme based on lightweight cryptographic authenticated encryption to
enhance the security of the communication channel between the Digital Twin, Eclipse
Ditto [20], and its physical components over the Message Queuing Telemetry Transport
(MQTT) protocol using a technique called payload encryption.

In the following subsections, we first describe the design considerations and the re-
quirements (Section 3.1) we considered, the general description of the implementation
approach (Section 3.2), and the experimentation setup steps we took, starting from setting
up Eclipse Ditto (Section 3.3) and Mosquitto MQTT broker (Section 3.4), implementing and
integrating the selected AEAD algorithms (Sections 3.5 and 3.6), and ending by demon-
strating the functioning experimentation set-up (Section 3.7).

End-To-End Payload Encryption and Authentication: Our communication scheme
is based on payload authenticated encryption using one of the AEAD (authenticated
encryption with associated data) algorithms over the MQTT protocol.

3.1. Design Considerations and Requirements

This section highlights the design factors and requirements for developing our pro-
posed communication solution, ensuring secure communication between Digital Twins
and IIoT devices. These considerations are tailored specifically to address the resource
limitations of IIoT devices. This section discusses these considerations and defines the in-
and out-of-scope requirements.

In our proposed solution, we carefully considered the limitations of IIoT devices. To
address these constraints, we made specific design choices. Firstly, the scheme incorporates
a lightweight application protocol tailored to the restricted resources of these devices.
Secondly, the underlying cryptographic algorithm is selected based on a NIST-standardized
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lightweight encryption algorithm. These choices ensure our solution is optimized for the
efficient operation of IIoT devices, enhancing their overall performance and security. Our
proposed solution is based on the following design choices that take into account the
limited resources Industrial Internet of Things devices have:

• The application protocol should be lightweight.
• The underlying cryptographic algorithm should be based on a lightweight, NIST-

standardized encryption algorithm.

3.1.1. In-Scope Requirements

Our in-scope requirements included one performance requirement and several require-
ments related to security. From the performance perspective, the underlying cryptographic
algorithm of our proposed solution should be more efficient than the traditional algo-
rithms in terms of power consumption, speed, and storage complexity. Furthermore,
from the security perspective, the proposed solution should provide an adequate security
level for typical data communication in an Industry 4.0 environment, including ensuring
message/data confidentiality, integrity, and authenticity. In this regard, an encryption
algorithm that provides a minimum 80-bit security level (size of key) should be used. The
proposed solution encompasses two key requirements: performance and security. From
a performance perspective, the solution must outperform traditional algorithms in terms
of power consumption, speed, and storage complexity. In the realm of security, it should
provide an adequate level of protection for data communication within an Industry 4.0
environment, necessitating the use of an encryption algorithm with a minimum 128-bit
security level (key size). Moreover, the security requirement extends to specific services,
including authentication, confidentiality, and data integrity.

Performance Requirement: The proposed solution should be based on a cryptographic
algorithm performing better than traditional algorithms in terms of power consumption,
speed, and storage complexity.

Security Requirements: the proposed solution should provide an adequate security
level for typical data communication in an Industry 4.0 environment, including ensuring
message/data confidentiality, integrity, and authenticity. In this regard, an encryption
algorithm that provides a minimum 80-bit security level (size of key) should be used. In
addition to the above general security requirement, the proposed solution should provide
the following security services:

• Message authentication: The solution should enable the message receiver to check the
authenticity of the message.

• Message Confidentiality: The solution should provide message confidentiality by en-
crypting the message.

• Data Integrity: The solution should ensure the integrity of data transmission using
checksums or other methods to detect message corruption.

• Resilience: The solution should be capable of detecting man-in-the-middle attacks that
involve message modification and data injection.

3.1.2. Out of Scope Requirements

Even though proper key management is essential, it is an out-of-scope requirement
for us. We assume that symmetric keys are preshared before communication. Additionally,
we do not incorporate encryption technologies like SSL/TLS on the application level to
avoid computation overhead on resource-constrained IoT devices.

• The proposed solution does not cover a secure key exchange mechanism between
the communicating parties. Instead, symmetric keys are assumed to be preshared
before communication.

• The communication protocol (MQTT) at the application level is not encrypted using
technologies like SSL/TLS to avoid computation overhead on the constrained device.
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3.2. Implementation Approach

To validate the applicability and effectiveness of our proposed solution, which relies
on lightweight cryptographic algorithms, we conducted an experiment employing an
ESP32 as a resource-constrained IoT device and Ditto as an open-source framework for
constructing Digital Twins. We chose the ESP32 boards for the experiment because they
are known for their cost-effectiveness and low-power characteristics in the market ([21]).
Furthermore, we selected Ditto based on its being easily customized through Java-based
plugins and its extensive usage within the open-source community. Figure 1 illustrates the
research experiment setup. The measurement tool in the research experiment set-up in
Figure 1 was used for performance analysis.

Payload encryption is a technique for ensuring message confidentiality at the appli-
cation level. In other words, this approach can be used to establish an end-to-end secure
channel between the sender and receiver at the application level to provide confidentiality
over transmitted data. However, in this paper, we extend the scope beyond message
confidentiality and introduce the use of the ASCON ([4]), a family of authenticated encryp-
tion with associated data (AEAD) algorithms, to provide both message authenticity and
confidentiality [4].

We chose to utilize the MQTT protocol for three reasons. Firstly, MQTT is a commonly
used communication protocol in IoT applications. Secondly, it is a lightweight messaging
protocol, that can be configured and programmed to support payload encryption using
any encryption algorithm, like the algorithms we chose for comparison, namely ASCON
and AES-GCM (family of AEAD based on AES). Thirdly, Eclipse Ditto [20] supports the
MQTT protocol, i.e., through Eclipse Mosquitto [22], as a connection.

To assess the practicality and efficiency of our proposed solution, centered around
lightweight cryptographic algorithms, an experiment was conducted using an ESP32
device, a cost-effective and low-power IoT board [21]. We employed Ditto, an open-source
framework for Digital Twins, recognized for its customization capabilities through Java-
based plugins and widespread usage in the open-source community. The experimental
set-up is depicted in Figure 1.

Figure 1. Research experiment set-up.

Traditionally, payload encryption is utilized to ensure message confidentiality, estab-
lishing a secure channel between sender and receiver at the application level. In this study,
we expand this concept by introducing ASCON, a family of authenticated encryption with
associated data (AEAD) algorithms [4]. ASCON not only ensures message confidentiality
but also guarantees message authenticity, enhancing security measures. The choice of
MQTT protocol was deliberate for several reasons. Firstly, MQTT is widely used in IoT
applications. Secondly, it is a lightweight messaging protocol that can be configured to
support payload encryption using various algorithms, including ASCON and AES-GCM
(an AEAD algorithm based on AES), which we utilized for comparison. Lastly, Eclipse
Ditto, supported by Eclipse Mosquitto [22], integrates seamlessly with the MQTT protocol,
enabling a robust connection for secure data transmission [23]. This strategic selection of
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components allowed us to thoroughly evaluate the effectiveness and practicality of our
proposed approach.

3.3. Eclipse Ditto—Digital Twin Setup

Eclipse Ditto, an open-source framework, serves as a platform for managing IoT
devices to create Digital Twins. Integrated with MQTT brokers, it enables Digital Twins to
connect with various backend systems using protocols such as AMQP, Apache Kafka, HTTP,
and MQTT. Ditto can be deployed either on-premises or in the cloud. For this research,
we deployed Ditto in the cloud, utilizing Docker as it requires fewer resources than the
alternative Kubernetes cluster setup. Within a Docker container, we have a collection
of five microservices that constitute Ditto, as well as two additional components. These
microservices encompass Policies for defining access rights, Things for handling physical
components, Things-Search for searching within the datastore, Gateway for HTTP and
WebSocket API, and Connectivity for connectivity management. Additionally, an nginx
instance serves as a reverse proxy, offering basic authentication functionality. Furthermore,
we utilize MongoDB as the underlying datastore for Ditto. Running Ditto in a docker
container has seven microservices operating in parallel, each fulfilling distinct functions.
These microservices include Nginx as the web server, Ditto Connectivity for managing
the device-to-Ditto connectivity, Ditto Thing for managing things (counterpart of physical
devices), Thing Search for facilitating efficient search using MongoDB, Swagger-UI for
providing a web-based user interface, and Ditto Policies for maintaining controlled access
over things. Since we aimed to test and compare the performance of different encryption
algorithms, we utilized one of the Ditto example projects (https://github.com/eclipse
-ditto/ditto-examples/tree/master/mqtt-quick-introduction, https://github.com
/eclipse-ditto/ditto-examples/tree/master/mqtt-bidirectional (accessed on 15 May
2023)) with minimal changes for setting up our experimentation system consisting of Ditto
and a single ESP32 board. These changes included, for example, giving access rights in
policies, defining ESP32 as a thing with humidity and temperature as its features, and
defining customized payload mapper and published/subscribed MQTT broker topics in
the connection configuration file.

3.4. MQTT Broker

We chose to utilize the MQTT protocol for three reasons. Firstly, MQTT is a commonly
used communication protocol in IoT applications. Secondly, it is a lightweight messaging
protocol, that can be configured and programmed to support payload encryption using
any encryption algorithm, like the algorithms we chose for comparison, namely ASCON
and AES-GCM (family of AEAD based on AES). Thirdly, Eclipse Ditto [20] supports MQTT
protocol, i.e., through Eclipse Mosquitto [22], as a connection.

The MQTT broker, designed for IoT communication, is crucial in our project. We
opted for Eclipse Ditto’s MQTT implementation, i.e., Mosquitto ([22]). Initially, we aimed
to customize and control the MQTT implementation by building it from the source on our
Linux server. This approach allowed us to directly incorporate a lightweight encryption
algorithm into the code. However, we chose to implement these algorithms by extending
the Ditto source code itself, using the provided connectivity extension. We utilized the
connectivity extensions provided by Ditto, which we further extended to utilize our AEAD
encryption algorithms. However, an external MQTT broker can also be used by installing it
on the same machine as Ditto (Digital Twin) or on a separate, remotely accessible machine.
Our scheme ensures secure IoT device communication with the cloud-hosted Ditto service.

The MQTT broker plays a pivotal role in our IoT communication project. We chose
Eclipse Ditto’s MQTT implementation, specifically Mosquitto. Leveraging Ditto’s con-
nectivity extensions, we extended them to incorporate our AEAD encryption algorithms.
Alternatively, an external MQTT broker can be utilized on the same machine as Ditto (Digi-
tal Twin) or a separate remote machine. Our approach guarantees secure communication
between IoT devices and the cloud-hosted Ditto service. Despite MQTT not inherently

https://github.com/eclipse-ditto/ditto-examples/tree/master/mqtt-quick-introduction
https://github.com/eclipse-ditto/ditto-examples/tree/master/mqtt-quick-introduction
 https://github.com/eclipse-ditto/ditto-examples/tree/master/mqtt-bidirectional
 https://github.com/eclipse-ditto/ditto-examples/tree/master/mqtt-bidirectional
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being a secure protocol, our MQTT broker functions as a proxy, forwarding encrypted
payload messages without access to IoT devices’ encryption keys. Consequently, only the
involved parties can decrypt and authenticate the payload. This entire process is visualized
in Figure 2. The MQTT broker’s limited access means it can only interact with the encrypted
payload, preventing any malicious broker from compromising communication security.
Our lightweight authentication and encryption algorithm, integrated into the solution,
guarantees the confidentiality and integrity of the exchanged data.

Even though MQTT is not a secure protocol, in our case, the MQTT broker acts
merely as a proxy forwarding encrypted payload messages and does not have the shared
encryption keys of IoT devices. Hence, only the communication parties can decrypt and
authenticate the payload. The whole process is illustrated in Figure 2.

Figure 2. Scheme of Payload Encryption With Authentication Over MQTT Protocol.

The communication process between devices and Ditto involves several key steps.
Firstly, each device connected to Ditto is assigned a unique device ID, crucial for ASCON’s
associative input. Secondly, a shared symmetric key exists between the device and its
corresponding Digital Twin. When a message needs to be sent, the sender encrypts the
payload and publishes it using MQTT under a topic that includes the device’s unique ID.
Similarly, the device uses its ID to publish messages for Ditto, creating a connection between
the sender and receiver. Upon reception, the receiver decrypts and authenticates the MQTT
message payload using the preshared symmetric key, ensuring the message’s integrity and
origin. In cases with multiple IoT devices, the receiver retrieves the appropriate shared key
using the device ID, thereby ensuring secure and authenticated communication.

3.5. Payload Encryption Algorithms

Payload encryption is a technique for ensuring message confidentiality at the appli-
cation level. In other words, this approach can be used to establish an end-to-end secure
channel between the sender and receiver at the application level to provide confidentiality
over transmitted data. However, in this paper, we extend the scope beyond message
confidentiality and introduce the use of the ASCON ([4]), a family of authenticated encryp-
tion with associated data (AEAD) algorithms, to provide both message authenticity and
confidentiality.

We used both C implementations of both encryption algorithms, ASCON (https://gi
thub.com/ascon/ascon_collection (accessed on 20 May 2023)) and AES-GCM (https://gi
thub.com/usnistgov/Lightweight-Crypto-graphy-Benchmarking/tree/main/implemen
tations/_reference_/crypto_aead/aes-gcm/mbedtls (accessed on 20 May 2023)) and Java
implementation of ASCON for Ditto. The C language was opted for ESP32, since C and
C++ are more suitable for low-level programming in such resource-constrained devices.
The ESP32’s main application was developed in C++, whereas the encryption algorithms,
ASCON and AES-GCM, were implemented in C. Since Ditto enables extending connectivity

https://github.com/ascon/ascon_collection
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https://github.com/usnistgov/Lightweight-Crypto-graphy-Benchmarking/tree/main/implementations/_reference_/crypto_aead/aes-gcm/mbedtls
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modules using jar packages, we chose to use the Java implementation of the ASCON. For
performance analysis purposes, applying encryption algorithms to Ditto was not necessary,
but to demonstrate a fully functional system, we incorporated ASCON on the Ditto side.

We selected and deployed C implementations of ASCON (https://github.com/ascon/a
scon_collection (accessed on 23 May 2023)) and AES-GCM (https://github.com/usnistgov/L
ightweight-Crypto-graphy-Benchmarking/tree/main/implementations/_reference_/cryp
to_aead/aes-gcm/mbedtls (accessed on 23 May 2023)) algorithms on the hardware IoT device
was carried out using C and C++ programming languages within the Arduino for the ESP-IDF
embedded development framework (https://github.com/ascon/ascon_collection (accessed
on 24 May 2023)). We chose C and C++ as implementation languages due to their suitability
for low-level programming in resource-constrained devices. We implemented the main IoT
device application in C++, and chose ASCON (https://github.com/ascon/ascon-c/tree/
29ef7a20a7372bd47fe7f4c92861e58e49cdce94/crypto_aead/ascon128av12/esp32 (accessed
on 24 May 2023)) and AES-GCM (https://github.com/usnistgov/Lightweight-Crypto-
graphy-Benchmarking/tree/main/implementations/_reference_/crypto_aead/aes-gc
m/mbedtls (accessed on 24 May 2023)) algorithms implemented in C. We then integrated
these AEAD algorithms into our C++ main application using the “extern” macro. In the
Ditto, only ASCON implementation in Java (https://github.com/ascon/javaascon/tree/cc
d7622190791f1ba05dc61a9f7b5d286a0a9cb8/src/iaik (accessed on 24 May 2023)) was used
to verify that the connection and encryption/decryption between Ditto and ESP32 works
as intended. Since our focus was on measuring performance on the resource-constrained
devices, it was not necessary to implement both encryption/decryption algorithms on the
Ditto side. Ditto’s connectivity module is extendable with Java modules, so we chose the
Java implementation of ASCON for decrypting the payloads of the IoT device messages.
Importantly, we used the ESP32 device-optimized reference implementation of ASCON.
We did not alter the algorithms’ implementations or introduce any further optimizations.
However, to enhance security, we incorporated a nonce generation function, vital for
countering security attacks like replay attacks involving the repeated use of encrypted
information on the hardware IoT device was carried out using C and C++ programming
languages within Arduino for the ESP-IDF embedded development framework. We opted
for C and C++ because those two choices are more suitable for low-level programming,
such as embedded resource constraint devices. The main application for the IoT device
was developed in C++, while the algorithm for ASCON and AES-GCM was implemented
in C and incorporated through the use of the "extern" macro in the C++ main application.

The counterpart of the algorithms in the Digital Twin were implemented in Java. This
is because the connectivity microservice of Ditto is implemented in Java. This allowed us to
extend the connectivity module using Java to incorporate an extension for encryption and
decryption of the payload that comes from IoT devices. We did not introduce optimizations
in the design of these algorithms. Still, for ASCON we selected the optimized reference
C implementation (https://github.com/ascon/ascon-c/tree/29ef7a20a7372bd47fe7f4c9
2861e58e49cdce94/crypto_aead/ascon128av12/esp32 (accessed on 24 May 2023)). We also
implemented a nonce generation function to provide nonces as inputs for ASCON, which
is crucial in addressing security attacks, such as replay attacks, which involve the repeated
use of encrypted information. For both algorithms (ASCON (https://github.com/ascon/a
scon_collection (accessed on 24 May 2023)) and AES-GCM (https://github.com/usnistg
ov/Lightweight-Cryptography-Benchmarking/tree/main/implementations/_reference
_/crypto_aead/aes-gcm/mbedtls) (accessed on 24 May 2023)), we selected the optimized
reference implementations based on a key length of 128 bits tailored for the ESP32 device
chip. However, to enhance the security of our implementation, we incorporated a function
to generate a nonce. This aspect is crucial in addressing security attacks, such as replay
attacks, which involve the repeated use of encrypted information.
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3.6. Ditto Java Base Payload Mapping

In the context of Eclipse Ditto [20], data storage and transfer are facilitated through a
format known as the Ditto protocol. This protocol utilizes a JSON structure, employing
key-value pairs to represent and transmit information. To seamlessly integrate with Ditto’s
capabilities, the connectivity microservice bundled with Ditto offers an extension specifi-
cally designed for intercepting incoming data. This extension allows for the mapping of
data from its original form to a format that Ditto can understand and store in its underlying
MongoDB database. Using the Ditto payload mapping feature, we can decrypt incoming
encrypted payload messages and convert them into a format that Ditto can process and
store. With the payload mapping feature in Ditto’s connectivity microservice, we can
achieve the following: receive encrypted data from the IoT device, decrypt and authenticate
it, and convert it into Ditto protocol messages. This helps ensure that the data sent between
the IoT device and Ditto is secure and authentic. To implement our custom mapping
functionality to encrypt and decrypt, we performed the following steps and illustrated in
Figure 3:

- Build Encryption Algorithms in Java: We created a JAR package from the encryption
algorithms implemented in Java. This class provides the ASCON or AES-GCM encryp-
tion and decryption operations needed for secure communication and data handling.

- Develop Custom Message Mapper Class: A custom message mapper class was
developed to handle the conversion of incoming device messages to the appropriate
Ditto protocol format. This class integrates with the encryption and decryption
functionality to ensure data integrity and security during the mapping process.

- Configure Ditto Connectivity Microservice: The Ditto connectivity microservice was
configured to recognize and load our custom message mapper. This configuration
step ensures that incoming messages are routed to our custom mapper for processing,
enabling seamless integration of our specific data transformation requirements within
the Ditto framework.

- Load Custom Message Mapper: The custom message mapper is loaded by the Ditto
connectivity microservice, ready to process incoming messages.

- Process Incoming Messages: Incoming messages are processed by the custom mes-
sage mapper.

- Encrypt/Decrypt Data: Data within the incoming messages are encrypted or decrypted
using the specified encryption algorithms (ASCON or AES-GCM).

- Convert to Ditto Protocol Format: The processed and secured data are converted to
the Ditto protocol format.

To integrate our encryption jar packages with Ditto, we added the following lines
to connection configurations “source”: caption=Addition to “sources” in the connection
configuration file as illustrated in Listing 1:

Listing 1. Source Encryption/Decryption jar package

" payloadMapping " : [ "AsconPayload " ] ,
" replyTarget " : {

" headerMapping " : { } ,
" expectedResponseTypes " : [

" response " ,
" e r r o r "

] ,
" enabled " : f a l s e

}

And the following lines to the “targets” of the same file as illustrated in Listing 2:
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Listing 2. Target Encryption/Decryption jar package

" headerMapping " : { } ,
" payloadMapping " : [ "AsconPayload " ]

In these lines, the “AsconPayload” was a reference to our encryption/decryption jar
package. Within the Eclipse Ditto framework, data storage and transfer occur using the
Ditto protocol, employing JSON format and key–value pairs for information representation.
To integrate seamlessly with Ditto, its connectivity microservice offers an extension de-
signed to intercept incoming data. This extension maps data to a format Ditto comprehends,
storing it in MongoDB. Utilizing Ditto’s payload mapping, encrypted payloads are de-
crypted and converted, ensuring secure and authentic communication between IoT devices
and Ditto. To implement custom mapping for encryption and decryption, specific steps
are followed. Firstly, a Java class providing ASCON or AES-GCM encryption/decryption
operations is built. Then, a custom message mapper class is developed to convert device
messages to the Ditto protocol format. This class integrates encryption/decryption func-
tionality, ensuring data integrity and security during mapping. Finally, Ditto’s connectivity
microservice is configured to recognize and load the custom mapper, allowing seamless
integration of specific data transformation requirements within the Ditto framework.

Figure 3. Flow diagram for custom data encryption and decryption in Ditto.
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3.7. Sending Authenticated Encrypted Payload to Ditto

This section demonstrates the proof of concept securing the communication between
the IoT device and the Digital Twin (Ditto) using the proposed solution.

Figure 4a depicts a snapshot captured from the serial monitor output of the board
(device) utilizing PlatformIO (embedded development framework). The image showcases
the device transmitting an encrypted payload to the ’ut-sensors’ topic while including
additional data labeled as ‘tid’ to uniquely identify the device.

In Figure 4b, a captured packet during the communication is displayed. Upon observa-
tion, it becomes evident that the topic being utilized is ‘ut-sensors’, and the message section of
the MQTT protocol header contains the device identifier along with the encrypted payload.

(a) Log output of ESP32 device using serial monitor

(b) Wireshark captured MQTT communication from IoT to Ditto

Figure 4. Serial monitor of ESP32 board and Wireshark capturing communication between the device
and Ditto (DT).

MQTT broker, hosted on the same server as Ditto, acts as a proxy, facilitating the
transmission of authenticated and encrypted payloads through a publish-subscribe model.
Once the MQTT broker receives a payload, it notifies Ditto of the new message it has
subscribed to. Ditto then retrieves the payload, decrypts it, and maps it into a Ditto
protocol message, which is subsequently stored in a database. The communication process
between devices and Ditto involves several key steps. Firstly, each device connected to
Ditto is assigned a unique device ID, crucial for ASCON’s associative input. Secondly,
a shared symmetric key exists between the device and its corresponding Digital Twin.
When a message needs to be sent, the sender encrypts the payload and publishes it using
MQTT under a topic that includes the device’s unique ID. Similarly, the device uses its
ID to publish messages for Ditto, creating a connection between the sender and receiver.
Upon reception, the receiver decrypts and authenticates the MQTT message payload using
the preshared symmetric key, ensuring the message’s integrity and origin. In cases with
multiple IoT devices, the receiver retrieves the appropriate shared key using the device ID,
thereby ensuring secure and authenticated communication.

Encryption key management strategies for ASCON are crucial to ensure secure key
distribution and storage, thereby enhancing the overall security posture of the proposed
solution. ASCON employs symmetric encryption, where both encryption and decryption
operations use the same secret key K.
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3.8. Key Distribution Strategies in ASCON
3.8.1. Preshared Key (PSK)

In scenarios where devices have prior knowledge of each other, a preshared key K is
securely distributed among them. Mathematically, this can be represented as

K = KPSK

Here, KPSK denotes the preshared key.

3.8.2. Key Exchange Protocols

For dynamic key distribution, ASCON can integrate with key exchange protocols such
as Diffie–Hellman (DH) or Elliptic Curve Diffie–Hellman (ECDH). These protocols allow
devices to establish a shared secret over an insecure channel, which can then be used as the
encryption key K.

3.8.3. Diffie–Hellman (DH)

Devices compute a shared secret K = gab mod p, where g is a generator, a and b are
private keys of the communicating parties, and p is a large prime number.

3.8.4. Elliptic Curve Diffie–Hellman (ECDH)

Similar to DH but operates over elliptic curve groups, providing stronger security
with smaller key sizes.

3.9. Key Storage Practices
3.9.1. Secure Storage

Once established, keys K are stored securely using cryptographic key storage mecha-
nisms. This ensures that unauthorized access to keys is prevented. Mathematically, secure
storage can be denoted as

Secure Storage(K)

This may involve hardware security modules (HSMs), secure enclaves, or trusted execution
environments (TEEs) depending on the deployment environment.

3.9.2. Key Rotation

Periodic key rotation is essential to mitigate risks associated with long-term key
exposure. New keys are generated and securely distributed, ensuring data confidentiality
and integrity over time. Mathematically, key rotation can be represented as:

Knew ← GenerateKey()

In summary, ASCON’s encryption key management strategies focus on secure distribution
(PSK, key exchange protocols), robust storage practices, and periodic key rotation. These
practices collectively contribute to maintaining a high level of security in IoT and Industry
4.0 deployments.

To simulate the life cycle of a Digital Twin, we developed a web application that
models the temperature and humidity features of an ESP32 sensor. The application utilizes
JavaScript to retrieve these values through a stream of data using server-side events (SSE).
Moreover, to send commands or messages to the server, we employ the HTTP POST API of
Ditto. By subscribing to the command event associated with a specific topic, any device
can consume the message and execute the corresponding action. This activity effectively
simulates the communication between the Digital Twin and the actuators. Conversely, the
communication from the IIoT device to the Digital Twin serves the purpose of collecting
telemetry data from the operational environment.

Figure 5a illustrates the WebUI of Ditto, which is included by default in the code base.
This web portal serves as a portal offering device, policy, and connection management
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functionalities. Additionally, Figure 5b provides an overview of an application layer built
on the Digital Twin concept. The attributes displayed on the upper part of the image
represent the name and type of the simulated device. The gauges visually represent
the received device features, while the bottom right section presents textual information
associated with the device.

(a) A data log viewed from the Ditto platform
(b) Web application for modeling

temperature and humidity of ESP32

Figure 5. Ditto and web app for simulating Digital Twin.

This section discusses the relevant background information, the proposed solution’s
design requirement, and the implementation details. By implementing the proposed
solution on both the Digital Twin (Ditto) and IIoT device (ESP32), we showed how to secure
the communication channel using a resource-efficient authenticated encryption algorithm.

In the next section, we provide the performance analysis results of our proposed
solution regarding speed, memory usage, and power consumption. For the analysis, we
measured the performance of our proposed solution based on three implementations
without an encryption algorithm, with the ASCON lightweight algorithm and AES-GCM
heavyweight algorithm based on AES.

4. Performance Analysis

A performance analysis is a systematic study and measurement of various performance
metrics to determine the effectiveness and efficiency of a system, process, or application.
This includes factors such as processing speed (latency), memory utilization, and power
consumption. In this section, we focus on the quantitative assessment of performance
metrics, specifically processing speed, memory requirements, and power consumption.
The objective is to compare two distinct algorithms: one based on a lightweight algorithm
and the other based on a traditional heavyweight encryption algorithm. This comparative
analysis is conducted both at the functional level and within the broader application context
of the proposed solution. Before starting the analysis, we present a case scenario that serves
as the foundation for our measurements. Subsequently, this section reveals the outcomes
of our performance measurements, shedding light on the quantitative results derived
from the analysis. Last, we delve into a security analysis of the proposed communication
scheme to validate the robustness and reliability of the proposed communication scheme
in real-world scenarios.

4.1. Measurement Case Scenarios

To assess the performance of our proposed solution, we designed three case scenarios.
For each scenario, we conducted analyses at both the algorithmic (function call) level and
examined the broader application overhead.

Case 1: AES-GCM: In this case, we assessed the performance of the AES-GCM en-
cryption algorithm in terms of power consumption, memory usage, and processing speed.
We analyze both its standalone performance as a function and its implementation within
the application



Network 2024, 4 276

Case 2: ASCON: In this case, we measured the performance of the ASCON encryp-
tion algorithm both at the functional level and its impact on the implementation of the
proposed solution

Case 3: No encryption: This case scenario served as a baseline reference for the other
two cases. In this case, we called a function that had a similar signature to the encryption
function calls used for ASCON and AES-GCM. However, the underlying function did not
perform any operations other than copying values from one memory location to another
(https://libsodium.gitbook.io/doc/ (accessed on 27 May 2023)) villustrated in Listing 3:

The implementation code for this case can be seen in the following code list.

Listing 3. C Implementation of No-Encryption—Base Line Reference of Measurement.

i n t crypto_aead_encrypt (
unsigned char * c , unsigned long long * clen ,
const unsigned char *m, unsigned long long mlen ,
const unsigned char * ad , unsigned long long adlen ,
const unsigned char * nsec ,
const unsigned char *npub ,
const unsigned char * k
)

{
* c len = mlen + CRYPTO_ABYTES ;
memcpy( c , m, mlen ) ;
memset ( c + mlen , 0 , CRYPTO_ABYTES) ;

re turn 0 ;
}

i n t crypto_aead_decrypt (
unsigned char *m, unsigned long long * mlen ,
unsigned char * nsec ,
const unsigned char * c , unsigned long long clen ,
const unsigned char * ad , unsigned long long adlen ,
const unsigned char *npub ,
const unsigned char * k

)
{

unsigned long long len = * mlen = c len − CRYPTO_ABYTES ;
memcpy(m, c , len ) ;

re turn 0 ;
}

4.2. Performance Measurement—Speed, Memory, and Power

The performance of a particular category of encryption algorithms is influenced by the
algorithm’s complexity, defined by factors such as the number of processing rounds and
required CPU instructions. It is essential to recognize that there exists a trade-off between
security and performance. More intricate algorithms generally offer higher security levels
but demand greater computational resources and execution time. Therefore, designers
and practitioners must meticulously assess the acceptable performance and the minimum
required security level for a specific application before selecting encryption algorithms. This
section aims to provide insights into the performance of our proposed solution, which relies
on two algorithms, AES and ASCON, both utilizing a 128-bit key size. Our primary focus
centers on measuring their processing speed, memory consumption, and power utilization.
Additionally, we introduce a nonencrypted implementation to serve as a benchmark for
comparative analysis.

4.2.1. Speed—Running Time

To measure the execution time of the algorithms, we used the built-in function
esp_timer_get_time() from the ESP-IDF framework. By capturing the start time be-
fore executing the function and the end time after the function completes, we can calculate

https://libsodium.gitbook.io/doc/
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the execution time by subtracting the start time from the end time. Our experimental
setup involves three distinct case scenarios. Firstly, we measure the execution time when
the application runs without any encryption algorithm. Then, we measure the execution
time when the messages are encrypted using ASCON and AES algorithms. Note that we
measure the performance of the proposed solution from two perspectives: (1) from the time
required to run the encryption algorithm within the application program and (2) from the
perspective of measuring the total time required to process the message and send it to the
Digital Twin (Cloud). Both case scenarios are shown in figure Figure 6a,b. To obtain accurate
measurements, we allow our programs to run 1000 function calls sending data after encryp-
tion for each case scenario. We then calculate the average execution time using a Python
script that processes the dump file we collected from the device. As it can be seen from
Figure 6a, ASCON’s execution time is lower than AES-GCM. Similarly, Figure 6b shows
that our proposed solution performs well when ASCON is used. These results suggest
that ASCON is a promising candidate for use in our proposed solution. To measure the
execution time of the algorithms, we utilized the built-in function esp_timer_get_time()
from the ESP-IDF framework. By capturing the start time before executing the function
and the end time after the function completes, we calculated the execution time by sub-
tracting the start time from the end time. Our experimental setup comprised three distinct
case scenarios. Firstly, we measured the execution time when the application ran without
any encryption algorithm. Next, we measured the execution time when messages were
encrypted using ASCON and AES algorithms. It’s important to note that we evaluated the
performance of the proposed solution from two perspectives:

1. The time required to run the encryption algorithm within the application program
2. The total time needed to process the message and send it to the Digital Twin (Cloud)

As Figure 6a illustrates, ASCON’s execution time was lower than that of AES-GCM.
Similarly, Figure 6b demonstrates that our proposed solution performed well when AS-
CON was used. These results strongly suggest that ASCON is a promising candidate for
integration into our proposed solution.
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Figure 6. Performance of three case scenarios from algorithm execution speed and application
running time.

Throughput and Cycle Byte Ratio

Throughput is a performance indicator of a system that measures the number of bytes
processed per unit of time (typically seconds). It is a measure of how efficiently a system
can process data. The more bytes that are processed per unit of time, the better the system
performs. Throughput is typically measured in bytes per second (Bps) or kilobytes per
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second (Kbps). The Cycle Byte Ratio is another performance metric that measures the
number of CPU cycles needed to process a single byte. Table 2 presents the cycle counts
for different scenarios: (1) without employing any encryption algorithm, (2) utilizing the
ASCON encryption algorithm, and (3) employing the AES-GCM encryption algorithm.
Throughput serves as a crucial performance indicator for a system, quantifying the number
of bytes processed within a specific time frame, typically measured in seconds. It gauges a
system’s efficiency in handling data; the higher the throughput, the more efficiently the
system processes information. Additionally, the Cycle Byte Ratio, another vital performance
metric, calculates the number of CPU cycles required to process a single byte of data.
Table 2 displays cycle counts for the three different scenarios mentioned in Section 4.1:

Table 2. Cycle count for 3 cases: No-Encryption, ASCON, AES-GCM.

No-Encryption ASCON AES-GCM

Cycle Count 2009 36,811 49,956
Byte Processed 32 32 32
CPU Freq MHz 240 240 240
Cycle per Byte 64.28 1094.68 31,517.90

Time Elapsed µs 8.57 145.95 202.38
Throughput B/µs 3.73 0.219 0.158

Throughput =
Byte processed

Total Time
(1)

Cycle Byte =
Cycle Count

Byte processed
(2)

The total time taken by the CPU to perform an operation can be derived using cycle count
and the CPU clock frequency using the following formula:

Total Time =
Cycle Count

CPU frequency in Mhz/Khz
(3)

In this experiment, we use xthal_get_ccount() from esp32/ck.h library to obtain the
cycle count at a given time, and the getCpuFrequencyMhz() function to obtain the current
set CPU frequency of the device from esp32-hal-cpu.c source file.

We calculated the throughput and Cycle Byte Ratio of each algorithm in the pro-
posed solution processing 16 bytes of messages and 16 bytes of associated data, using
Equations (1) and (2). The results are shown in Figure 7a,b.
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Figure 7. Throughput and cycle per byte ratio of each algorithm.

4.3. Static and Dynamic Memory Footprint

Examining and evaluating the memory utilization of embedded programs is crucial,
particularly in devices with limited memory capacity. In this section, we delve into the
analysis of both static and dynamic memory usage within our proposed solution. During
our assessment, we explored three different implementation scenarios as mentioned in
Section 4.1.

The memory map in embedded programming is divided into sections. The flash
memory part includes the .rodata, which contains the data variables, and the .textsection,
which contains the code resulting from compiling and building the source program [24].
This section contains static codes and requires a fixed memory size. In contrast, the RAM
section of the memory is responsible for containing a few sections for statically generated
codes, and the majority of it is used for dynamic memory management, such as stack and
heap allocation as illustrated in Figure 8.

Figure 7. Throughput and cycle per byte ratio of each algorithm.
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4.3. Static and Dynamic Memory Footprint

Examining and evaluating the memory utilization of embedded programs is crucial,
particularly in devices with limited memory capacity. In this section, we delve into the
analysis of both static and dynamic memory usage within our proposed solution. During
our assessment, we explored three different implementation scenarios as mentioned in
Section 4.1.

The memory map in embedded programming is divided into sections. The flash
memory part includes the .rodata, which contains the data variables, and the .textsection,
which contains the code resulting from compiling and building the source program [24].
This section contains static codes and requires a fixed memory size. In contrast, the RAM
section of the memory is responsible for containing a few sections for statically generated
codes, and the majority of it is used for dynamic memory management, such as stack and
heap allocation as illustrated in Figure 8.

Figure 8. Memory map of embedded programming [25].

In our analysis of the dynamic memory usage, we focused only on the RAM section.
However, when assessing the static memory usage (code size), we examined both the RAM
and Flash sections. This approach was necessary as both sections contribute to the overall
code size.

4.3.1. Static Memory Usage—Code Size

The static code size measurement was conducted to compare the code size require-
ments of three different implementation scenarios: No-Encryption, ASCON, and AES-GCM.
The goal was to assess the impact of these implementations on resource-constrained devices
in terms of memory usage.

Table 3 provides a summary of the code size measurements for each scenario. In
the No-Encryption scenario, no additional code was required beyond the base program,
resulting in minimal memory usage. Our implementation based on ASCON introduced
a slight increase in code size. Approximately 1 KB of additional memory was needed
in both RAM and Flash compared with the No-Encryption scenario. On the other hand,
AES-GCM demonstrated slightly higher code size requirements. The implementation
demanded approximately 8 KB more RAM and 5.6 KB more Flash memory compared with
the No-Encryption case. The results are illustrated in Figure 9.
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The static code size measurement was conducted to compare the code size require-
ments of three different implementation scenarios. The objective was to assess the impact of
these implementations on resource-constrained devices in terms of memory usage. Table 4
provides a summary of the code size measurements for each scenario. In the No-Encryption
scenario, no additional code was required beyond the base program, resulting in minimal
memory usage. Our implementation based on ASCON introduced a slight increase in
code size. Approximately 1 KB of additional memory was needed in both RAM and Flash
compared with the No-Encryption scenario. On the other hand, AES-GCM demonstrated
slightly higher code size requirements. The implementation demanded approximately 8
KB more RAM and 5.6 KB more Flash memory compared with the No-Encryption case

Table 3. Code Size (KB): No-Encryption, ASCON, AES-GCM.

No-Encryption ASCON AES-GCM

Ram KB 59.3 59.3 68
Flash KB 766.5 767.7 772.1
Total KB 825.8 827 840.1

Cycle per Byte 64.28 1094.68 31,517.90
Time Elapsed µs 8.57 145.95 202.38

Throughput B/µs 3.73 0.219 0.158

Table 4. Cycle count for 3 cases: No-Encryption, ASCON, AES-GCM.

No-Encryption ASCON AES-GCM

Cycle Count 2009 36,811 49,956
Byte Processed 32 32 32
CPU Freq MHz 240 240 240
Cycle per Byte 64.28 1094.68 31,517.90

Time Elapsed µs 8.57 145.95 202.38
Throughput B/µs 3.73 0.219 0.158
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Figure 9. Static code size of the scheme for three scenarios (No-Encryption, ASCON, AES-GCM).

4.3.2. Dynamic RAM Usage

Measuring the dynamic RAM usage of each algorithm is challenging compared with
measuring static memory usage. This challenge arises from the need to monitor the dynamic
memory allocations and deallocations on both the heap and stack, occurring throughout
function calls and returns.

While an effective technique suggested by NIST involves overwriting memory with
known values before program execution and subsequently tracking the memory cells
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affected by the program’s operations, we opted for alternative methods to approximate the
dynamic memory usage of each algorithm, described as follows.

In our device (ESP32), we discovered that the initially allocated memory for handling
heap and stack allocation is 327,680 Bytes. With this information, we track the minimum
heap size ever available, utilizing the system call esp_get_minimum_free_heap_size. Our
program was executed for 1000 iterations calling the encryption function for each imple-
mentation, allowing us to obtain a snapshot of the free memory available between the stack
and heap 1000 times. By calculating the difference between the total allocated dynamic
memory and the minimum heap size recorded, we were able to approximate the memory
footprint of each implementation.

Furthermore, we employed the baseline implementation, which does not incorporate
an encryption/decryption algorithm, as a benchmark to estimate the dynamic memory
usage overhead added by ASCON and AES-GCM algorithms(see Figure 10b). This compar-
ison with the baseline provided insight into the dynamic memory usage of each algorithm
at the running time.

Measuring the dynamic RAM usage of each algorithm presents a challenge compared
with measuring static memory usage. This difficulty stems from the need to monitor
dynamic memory allocations and deallocations on both the heap and stack, occurring
during function calls and returns. While an effective technique suggested by NIST involves
overwriting memory with known values before program execution and subsequently
tracking the memory cells affected by the program’s operations, we have chosen alternative
methods to approximate the dynamic memory usage of each algorithm, as described below.

In the ESP32 device, we found that the initially allocated memory for handling heap
and stack allocation is 327,680 bytes. Armed with this information, we monitored the
minimum heap size available using the system call esp_get_minimum_free_heap_size. The
program was executed for 1000 iterations, calling the encryption function for each imple-
mentation. This allowed us to capture a snapshot of the free memory available between
the stack and heap 1000 times. By calculating the difference between the total allocated
dynamic memory and the minimum heap size recorded, we could approximate the memory
footprint of each implementation.
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by the algorithm.

Figure 10. Dynamic memory usage comparison of our scheme implementation and algorithms.

Additionally, we utilized the baseline implementation, which lacks an encryption/de-
cryption algorithm, as a benchmark to estimate the dynamic memory usage overhead
introduced by the ASCON and AES-GCM algorithms (refer to Figure 10b). This compari-
son with the baseline offered valuable insights into the dynamic memory usage of each
algorithm during runtime.
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4.4. Power Consumption Measurement

Power consumption holds paramount importance, especially for resource-constrained
Internet of Things (IoT) devices, as it directly impacts their battery life. Several techniques
are available for measuring the power consumption of IoT devices, such as USB power
meters and oscilloscopes.

USB power meters offer a cost-effective and user-friendly option; however, they may
lack accuracy by not considering the power consumption of individual device components.
On the other hand, while oscilloscopes offer high precision, they might lack the granularity
needed to measure very low-power states accurately. In resource-constrained devices,
power consumption often needs to be measured in microamps or even nanoamps, which
can be challenging for standard oscilloscopes.

In this section, we outline the methods and outcomes of power measurements con-
ducted on our proposed solution, implemented on the ESP32 device using the Otii-arch tool
that calculates power and energy consumption and integrates with software output [26]

Method of Power Measurement

Measuring the power consumption of an algorithm or a running application presents
significant challenges, primarily due to power noise generated by other board components
like Wi-Fi and Bluetooth. Obtaining an accurate measurement of the power consumption of
machine code running on a chip necessitates a meticulously controlled laboratory environ-
ment, where the chip is isolated from other components. This process entails connecting a
precise voltage source, often an expensive oscilloscope, and then capturing and measuring
the power intake of the chip.

Nevertheless, in this project, we estimate the power consumption of our proposed
solution by employing the Otii arch from Quitech AB. This is achieved through the setup of
UART recording techniques [27], enabling us to focus specifically on the power consump-
tion of each function within the running application. The procedure for measuring power
consumption using UART recording is outlined as follows and illustrated in Figure 11:

• The measuring device (Otti-arc) is connected to a power source of 3.7 volts.
• The application of the proposed solution with UART logging code is built and de-

ployed to the ESP32 device.
• A jumper is used to connect GPIO 17 TX from ESP32 to the expansion port RX on

the Otti-arch.
• In the Otii application, the appropriate digital voltage level for our device is selected,

and the UART channel with the correct Baud rate is configured.
• The impact of each called function on power consumption is analyzed by marking the

UART message from the UART log window to obtain the corresponding power graph
from the main window.

Table 5 shows the power analysis of three variants of our proposed solution in terms
of current intake and energy consumption. The variant with no encryption exhibits lower
average current intake and energy consumption compared with the other two variants.
The AES-GCM variant consumes more current and energy, indicating its higher resource
demands. On the other hand, ASCON maintains in between with average current con-
sumption (116 mA) and energy (530 nWh).

The power analysis shows that ASCON requires less power while providing an
equivalent level of security compared with AES-GCM. This is also evident from the cycle
count of the algorithms, as shown in Table 2. AES-GCM has a higher cycle count than
ASCON and No-Encryption, leading to higher current intake and energy consumption. On
the other hand, the cycle count of ASCON falls in between No-Encryption and AES-GCM,
resulting in average current and energy consumption levels higher than No-Encryption
but lower than AES-GCM.
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Table 5. Power Consumption of LOLIN32 Lite ESP-32 Device With Three Variant Implementations
of The Proposed Solution.

Algorithm Min Avg Max Energy

No encryption is applied 41.7 mA 57.1 mA 117 mA 262 nWh

ASCON 116 mA 116 mA 116 mA 530 nWh

AES-GCM 136 mA 192 mA 227 mA 878 nWh

Figure 11. Power measurement set−up using Otii−arch.

Figure 12 shows the power consumption results of three implementations (No-Encryption,
ASCON, and AES-GCM). At around 9.56 s, the power consumption of the three implemen-
tations is approximately equal. However, as time progresses, the power consumption of
AES-GCM increases significantly, while the power consumption of ASCON remains relatively
constant at around 116 mA. This suggests that the AES-GCM algorithm requires more CPU
cycles than ASCON, which results in a higher power spike.

Figure 12. Power analysis read of LOLIN32 Lite ESP32 using the Otii-arch device.
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5. Hypothesis Testing and Confidence Intervals

In this section, we aim to compare the mean processing speeds and memory require-
ments between AES-GCM and ASCON. By employing statistical tools such as hypothesis
testing and confidence intervals, we ensured a robust evaluation of the performance metrics,
providing insights into the effectiveness and efficiency of ASCON.

5.1. Hypothesis Testing
5.1.1. Objective

• Comparison: The aim was to compare the mean processing speeds and memory
requirements of two encryption algorithms, AES-GCM and ASCON, both using a
128-bit key size.

• Null Hypothesis (H0): There is no significant difference in the mean processing speeds
and memory requirements between AES-GCM and ASCON.

• Alternative Hypothesis (Ha): There is a significant difference in the mean processing
speeds and memory requirements between AES-GCM and ASCON.

5.1.2. Methodology

• Data Collection: Performance metrics (processing speeds and memory requirements)
were measured for both AES-GCM and ASCON in various operational scenarios.

• Statistical Test: Since the data likely follow a normal distribution (assuming large
sample sizes or normality was checked), a two-sample t-test was used for hypothe-
sis testing.

– The two-sample t-test compares the means of two independent groups (AES-GCM
and ASCON) to determine if they are statistically different from each other.

5.1.3. Interpretation

• p-Value: The computed p-value from the t-test indicates the probability of observing
the data if the null hypothesis (H0) is true. A lower p-value suggests stronger evidence
against H0.

• Significance Level (α): Typically set at 0.05, the significance level determines the
threshold for rejecting H0. If the p-value is less than α, H0 is rejected in favor of Ha,
indicating a significant difference.

5.1.4. Outcome

• Conclusion: Based on the results of the hypothesis test, conclusions were drawn
regarding whether there was a statistically significant difference in processing speeds
and memory requirements between AES-GCM and ASCON.

5.2. Confidence Intervals
5.2.1. Objective

• Assessment: Confidence intervals were calculated to estimate the range of values
within which the true mean processing speeds and memory requirements for AES-
GCM and ASCON were likely to fall.

• Reliability: They provide a measure of the variability and reliability of the perfor-
mance metrics, aiding in the interpretation of the quantitative results.

5.2.2. Methodology

• Calculation: For each performance metric (processing speeds and memory require-
ments), a confidence interval was computed.

– A common choice is the 95% confidence level, which means there is a 95% proba-
bility that the true mean lies within the calculated interval.
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5.2.3. Outcome

• Conclusion: The interpretation of the confidence intervals helps validate the consis-
tency and reliability of the performance metrics observed for AES-GCM and ASCON,
providing additional evidence to support the conclusions drawn from hypothesis test-
ing.

6. Security Analysis

The security analysis aims to evaluate the robustness of the proposed communication
scheme for securing IoT device messages sent via the MQTT protocol. This analysis ad-
dresses the key security properties of the encryption scheme, including data confidentiality
and message integrity. Although key management is also another critical aspect of security
analysis, it is not considered within the scope of this analysis. The security analysis focuses
on assessing the strength of the proposed communication scheme, safeguarding messages
from IoT devices transmitted via the MQTT protocol. This evaluation delves into crucial se-
curity aspects of the encryption scheme, such as data confidentiality and message integrity.
While key management holds significant importance in security analysis, it falls outside
the scope of this examination.

6.1. Encryption Scheme Overview and Preliminary Assumption

Our proposed communication scheme leverages the ASCON algorithm which is
computationally efficient and suitable for resource and power constraints for IoT devices
with a 128-bit level of security. ASCON has been evaluated by a number of security experts
and has been found to be secure [4].

As long as the security of ASCON is not broken, the proposed scheme with safe
implementation is secure. The only information leaked to the adversary is the associated
data, namely the thing ID (id). The thing ID is the additional data (or associated data)
used in our authenticated encryption with associated data implementation to retrieve the
right key upon receiving the message. The thing ID does not provide any advantage
to an attacker even if it can be accessed in clear text. In addition, we assume that the
private (symmetric) key is deployed before the communication starts through some sort
of secure communication channel. Our proposed communication scheme relies on the
ASCON algorithm, known for its computational efficiency and suitability for IoT devices
operating under resource and power constraints, providing a 128-bit level of security.
ASCON’s security has been rigorously evaluated and confirmed by security experts [4].
As long as ASCON remains secure, our proposed scheme, when implemented safely,
ensures security. The only information accessible to adversaries is the associated data,
specifically the thing ID. This ID serves as additional data in our authenticated encryption
with associated data implementation, facilitating the retrieval of the correct key upon message
reception. Even if accessed in plain text, the thing ID does not grant any advantage to an
attacker. Furthermore, we presume the private (symmetric) key is securely deployed before
communication commences, accomplished through a secure communication channel.

6.1.1. Security Aspect of MQTT Protocol

It is important to note that the application protocol used, specifically the MQTT
protocol, is not encapsulated or secured using TLS or any other security protocol. As a
result, all the metadata associated with the MQTT protocol is openly available to the public,
including the topic names, the message payload sizes, and the timestamps of the messages.

The MQTT protocol is not designed for secure communication. It is designed for
lightweight, efficient communication between constrained devices. Hence, in the proposed
scheme, only the message at the application level is secured through the AEAD algorithm
and payload encryption. However, one can set up a gateway between the IIoT device and
Digital Twin to provide security over the MQTT protocol.
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Scheme Security Attacks

In our communication scheme, we rely on the security provided by ASCON, as it is
the encryption algorithm used to protect the payload. However, we also include the device
ID in clear text alongside the encrypted payload for the reason explained in Section 6.1 that
could introduce weakness in our scheme. In the following, we examine potential security
attack scenarios that could exploit the availability of the device ID.

Identity Spoofing Attack: An attacker might attempt to create a crafted encrypted
payload and use a valid sensor’s unique ID to impersonate a legitimate device. However,
this message will be detected and discarded by the receiver (Digital Twin) as it will never
result in a valid authentication tag. Therefore, As long as the private key of the device is
secure and not accessible to potential attackers, the receiver can ensure the integrity and
authenticity of the communication process.

Replay Attack: An attacker, as a man-in-the-middle, might intercept the communica-
tion with the intent of replaying the messages later to perform malicious intent. Yet, this
attack is not feasible since the two communication parties are engaged with fresh nonce
for each encryption. Hence, due to the nonce used in ASCON encryption, the proposed
scheme is secure against replay attacks [4].

6.1.2. Security Attacks on ASCON

ASCON has been thoroughly evaluated by various security experts during the com-
petition of CAESAR, and no practical weaknesses have been found [4]. The algorithm’s
employed rounds (linearity and differentiality) provide security against known attacks,
including linear, differential attacks, and cube-like attacks [28].

Resistance Against Side-Channel Attacks: The bit-sliced implementation of the S-
boxes in ASCON provides defense against cache-time attacks [4]. This is because bit-sliced
S-boxes are implemented in a way that does not require memory access or a lookup table.
Instead, they are implemented using bit-level operations, which are difficult to attack.

In addition, the low algebraic degree of the S-boxes in ASCON allows an implementa-
tion to be resistant to extracting information from the power consumption or execution time
of the algorithm [4]. Using masking [29] and shared-based [30] counter-measure techniques,
ASCON can be implemented to provide resistance against power side-channel attacks.

6.2. Threat Model

1. Adversary Capabilities :

• Eavesdropping: The adversary A can intercept messages m between IoT devices and
Digital Twins.

• Active Attacks: The adversary A can modify, inject, or replay messages m such that
m′ ̸= m.

• Cryptographic Attacks: The adversary A can perform brute force, differential, linear,
and algebraic attacks on the encryption algorithm.

• Side-Channel Attacks: The adversary A can exploit physical leakages such as timing t,
power consumption P, and electromagnetic emissions E to gain information about the
encryption keys k.

2. Assets:

• Confidentiality: Ensure that only authorized parties can read the data m. Formally,
for an encryption algorithm Ek(m), an adversary A should not be able to derive m
from Ek(m).

• Integrity: Ensure that data have not been altered by unauthorized parties. For a
message m and its corresponding MAC MACk(m), any modification m′ ̸= m should
result in verification failure.

• Authenticity: Verify the origin of the data. Formally, for a message m and its signature σ,
Verify(m, σ, pk) = true if and only if σ was generated by the private key corresponding
to pk.
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• Availability: Ensure that services remain available to authorized users.

3. Security Goals:

• Data Encryption: Protect data in transit between IoT devices and Digital Twins.
• Authentication: Verify the identity of communicating parties.
• Message Integrity: Detect and prevent tampering with messages.

6.3. Security Analysis of ASCON

ASCON is designed as a lightweight cryptographic algorithm, providing authenticated
encryption with associated data (AEAD). Here is a detailed analysis of its security features:

1. Resistance to Differential Cryptanalysis:

• Assumption: Differential probability DP( f , ∆x → ∆y) for an S-box f is low.
• Proof : For ASCON, the differential uniformity of the S-box is designed to be low:

Pr[ f (x)⊕ f (x⊕ ∆x) = ∆y] ≤ 2−d

where d is a small constant, ensuring that differential characteristics are hard to exploit.

2. Resistance to Linear Cryptanalysis:

• Assumption: Linear probability LP( f , α→ β) for an S-box f is low.
• Proof : For ASCON, the linear approximation of the S-box is designed to be sparse:

Pr[α · x = β · f (x)] ≤ 2−l

where l is a small constant, making linear cryptanalysis infeasible.

3. Resistance to Algebraic Attacks:

• Assumption: ASCON’s internal state transformations P are highly nonlinear.
• Proof : The algebraic complexity of ASCON’s state transformations ensures that solving

the system of equations derived from the cipher is computationally infeasible.

4. Brute Force Attacks:

• Key Length: ASCON uses a 128-bit key k.
• Proof : The number of possible keys is 2128, making exhaustive search impractical:

Time complexity = O(2128)

5. Side-Channel Attack Resistance:

• Power Analysis:

– Assumption: Power consumption P(t) does not leak significant information about
the key k.

– Proof : ASCON operations can be implemented to ensure that power consumption
is constant-time:

P(t1) ≈ P(t2) for all t1, t2

• Timing Attacks:

– Assumption: Execution time t is independent of the key k.
– Proof : Constant-time implementations ensure that

t( f (x)) ≈ constant for all x

6. Message Authentication and Integrity:

• AEAD Mode:

– Assumption: ASCON provides both encryption and authentication.
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– Proof : Given a message m, a key k, and associated data a:

(c, MAC) = Ek(m, a)

where c is the ciphertext and MAC is the message authentication code. Verifica-
tion ensures integrity:

Verify(c, MAC, k, a) = true if and only if (c, MAC) was generated by k

6.4. Comparative Analysis with TinyJAMBU

1. Cryptographic Strength:

• ASCON: Designed to provide robust security with resistance against various at-
tack vectors.

– Proof : ASCON’s S-box and permutation functions are mathematically proven to
resist differential and linear attacks.

• TinyJAMBU: Also designed for lightweight applications, focusing on minimalistic
hardware implementation.

– Proof : TinyJAMBU relies on a lightweight permutation that is secure against
known attacks but may not be as versatile in software implementations.

2. Efficiency:

• ASCON: Optimized for both hardware and software, balancing security and performance.

– Proof : ASCON’s design ensures minimal overhead in resource-constrained envi-
ronments.

• TinyJAMBU: Primarily optimized for hardware, potentially limiting its software
performance.

– Proof : TinyJAMBU’s permutation is efficient in hardware but may require more
cycles in software.

3. Flexibility:

• ASCON: Supports a wide range of applications with AEAD capabilities.

– Proof : ASCON can be used for both encryption and authentication, making
it versatile.

• TinyJAMBU: Focuses on specific use cases.

– Proof : TinyJAMBU’s design is tailored for a minimal hardware footprint, which
may limit broader applications.

4. Resource Utilization:

• ASCON: Demonstrates lower power consumption and memory usage compared
with AES-GCM.

– Proof : Experimental results show ASCON’s efficiency in terms of power and
memory s shown in Section 4.

ASCON’s design, backed by attentive mathematical proofs, demonstrates its robust-
ness and efficiency as a lightweight cryptographic algorithm. Its resistance to differential,
linear, and algebraic attacks, combined with its low power consumption and memory usage,
make it a suitable choice for securing IoT communications. The comparative analysis fur-
ther highlights ASCON’s advantages over other lightweight algorithms like TinyJAMBU,
ensuring that industries can adopt secure and efficient encryption mechanisms without
compromising performance. In addition to its cryptographic strength, ASCON is well
suited for securing communication channels between Digital Twins (DTs) and their asso-
ciated physical devices in IoT ecosystems. By providing authenticated encryption with
associated data (AEAD) capabilities, ASCON ensures that data integrity, confidentiality,
and authenticity are maintained during transmission. This capability is crucial in IoT
environments where resource-constrained devices, require efficient and robust security
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mechanisms to protect sensitive data and enable reliable communication with DTs. By
offering both security guarantees and efficiency in resource utilization, ASCON supports
the seamless integration of DT technologies in Industry 4.0 and beyond. Industries can
confidently deploy ASCON to safeguard critical IoT communications while meeting rigid
performance requirements.

7. Discussion

Compared with the existing security mechanisms discussed in the literature review,
our proposed solution stands out as it is based on lightweight authenticated encryption
with associated data (AEAD), coupled with a payload encryption technique. Unlike all
of the reviewed approaches that demand high computational resources, our lightweight
authenticated encryption ensures data integrity and authenticity without imposing an
excessive processing burden on resource-constrained IoT devices.

While the payload encryption technique employed in our solution avoids the necessity
of SSL/TLS protocol handshake which is a highly resource-demanding process for resource-
constrained devices, the AEAD techniques provide data integrity within the encrypted
message without adding additional process steps for message authentication.

This combination of lightweight authenticated encryption and payload encryption,
makes our solution particularly well suited for real-world Industrial Internet of Things de-
ployments where energy efficiency and low computational costs are critical considerations.
In this way, our proposed approach offers an effective alternative to secure communication
in Industry 4.0 based on the application of Digital Twin and Industrial Internet of Things
technology, addressing the challenges posed by resource limitations while maintaining the
required level of security.

7.1. Scalability of ASCON in Large-Scale IoT Applications

ASCON’s scalability in large-scale IoT applications can be attributed to several key
specifications and characteristics of its algorithm:

1. Sponge Construction: ASCON employs a sponge construction, well-suited for flexible
data processing and variable input lengths. This design allows ASCON to handle
varying amounts of data efficiently, making it adaptable to different message sizes
encountered in IoT environments [31].

2. Efficient Memory Utilization: ASCON minimizes memory accesses during encryp-
tion and decryption processes, benefiting IoT devices with limited memory resources.
By reducing memory operations, ASCON mitigates potential bottlenecks as the num-
ber of connected devices increases [32].

3. Low Computational Overhead: ASCON operates with low computational complex-
ity, supporting high throughput across diverse IoT environments. Its streamlined
operations ensure cryptographic tasks are performed swiftly and consistently [31].

4. Adaptability and Configurability: ASCON can be configured in various modes
to optimize performance based on security needs, network constraints, and device
capabilities. This flexibility allows ASCON to adapt to different operational contexts
without compromising security or efficiency [32].

5. Resistance to Side-Channel Attacks: ASCON includes defenses against side-channel
attacks, ensuring the security of cryptographic operations in IoT devices. This re-
silience enhances ASCON’s suitability for large-scale IoT deployments [33].

These specifications highlight ASCON’s capability to scale effectively in large-scale
IoT applications, addressing challenges posed by increasing device connectivity and data
volumes while ensuring efficient and secure cryptographic operations.

7.2. Potential Limitations of ASCON Algorithm

The ASCON algorithm, distinguished for its efficiency and security in resource-
constrained environments, may encounter challenges in certain operational contexts:
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1. Performance in High-Dynamic Environments: ASCON’s performance may be influ-
enced by the dynamic nature of IoT environments where data rates fluctuate rapidly.
Sudden spikes in data volume or frequency of communication could impact ASCON’s
computational overhead and real-time responsiveness.

2. Resilience Against Advanced Attacks: While ASCON exhibits robust resistance
against common cryptographic attacks, its susceptibility to sophisticated attacks
such as side-channel attacks or fault injections warrants careful consideration.
These attacks exploit vulnerabilities in ASCON’s implementation or its sensitivity
to timing variations.

3. Compatibility and Interoperability: Integrating ASCON with existing systems and
platforms may present compatibility challenges. Ensuring seamless interoperability
across diverse IoT devices and communication protocols without compromising
security or performance is crucial.

4. Scalability in Large-Scale Deployments: ASCON’s scalability in deployments involv-
ing a large number of IoT devices transmitting data concurrently needs evaluation.
Key management, synchronization overhead, and network congestion could affect
ASCON’s operational efficiency.

5. Energy Efficiency on Low-Power Devices: While ASCON is designed to be lightweight,
its energy consumption on ultra-low-power devices (e.g., battery-powered sensors) with
strict energy constraints may be a concern. Optimizing ASCON’s cryptographic opera-
tions to minimize energy consumption without compromising security is challenging.

6. Adaptability to Future Security Threats: With evolving cybersecurity threats, AS-
CON’s adaptability and resilience to future cryptographic attacks and vulnerabilities
require continuous monitoring and updates. Algorithm agility and periodic security
assessments are essential to maintain ASCON’s effectiveness over time.

We elaborated on these potential limitations to provide a balanced view of ASCON’s
applicability in real-world scenarios. By discussing these challenges, we aim to guide
practitioners and researchers in making informed decisions regarding the adoption and
implementation of ASCON in diverse IoT and cybersecurity applications.

7.3. Implication of Lightweight Solution

While traditional encryption methods can be highly secure, there are situations that
require lightweight encryption solutions, especially in applications where real-time data
processing and low latency are critical requirements. For instance, in the power automation
system, the minimum tolerable time between fault detection and sending control to the
power station should be as low as 4 ms [34]. Hence, our proposed solution with less than
1ms for encryption and decryption can be used to meet the requirements of a such system.

Another implication of this work is related to power consumption. In a scenario where
a number of sensors are deployed in a remote area with battery power, the low power
consumption of the proposed solution can significantly increase the life span of the battery,
hence reducing frequent battery charging and replacement.

7.4. Limitations

While this study demonstrates the feasibility and practicality of employing lightweight
encryption algorithms to secure the communication channel between resource-constrained
devices and Digital Twin through the proposed communication scheme, it has also limita-
tions like any other research effort.

Scope of Implementation: According to [25], there are more than 80 stream and block
cipher algorithms candidates for lightweight cryptographic algorithms second-round NIST
competition. However, in this work, we only focus on the implementation of ASCON,
which is also a lightweight encryption algorithm. Investigating the implementation of
various algorithms on various resource-constrained hardware microprocess clouds can
provide more comprehensive insight.



Network 2024, 4 291

Performance Measurement: In this study, two performance metrics, memory and
power, are approximated. Due to time constraints and electronic laboratory resource limita-
tions, a 100% accurate measurement is not provided. For the memory usage measurement,
employing techniques like overwriting the memory with a known value and analyzing
the changed bit after running the program could prove more accurate than the techniques
used in this work. Similarly, for the power consumption, an accurate measurement could
have been achieved by running the algorithms on an isolated development board instead
of measuring the power consumption at the module level.

Despite these limitations, this research explores the practicability of lightweight en-
cryption algorithms for enhancing security in communication between Digital Twins and
the Industrial Internet of Things. Having in mind these limitations, in the next section, we
present future directions for further improvement.

7.5. Future Directions

Based on the insights gained from this work, the following future directions are
proposed for further exploration:

Optimizing ASCON for ESP32 Microprocessor Chip: Different microprocessors have
their own instruction architecture. Hence, future research work can be conducted on the
optimization of lightweight encryption (ASCON) algorithms tailored for specific hardware
devices, such as ESP32. This might involve identifying instructions that require fewer CPU
cycles and replacing those instructions in the reference implementation that require more
for the same operation.

Secure Remote Access for Resource-constrained Devices: In addition to securing
the communication channel of resource-constrained devices, it is essential to develop
secure remote access control solutions tailored specifically for those devices in Industry
4.0 settings. As a future work, authenticated encryption with associated data (AEAD)
lightweight algorithms can be further explored to provide secure remote access to sensors
and actuators deployed in industrial zones.

Exploring Trade-offs Between Security and Performance: Further exploration is
needed to analyze the trade-offs between security and performance when implementing
ASCON in resource-constrained IoT devices. This analysis will involve examining how
different configurations impact security levels and operational efficiency.

User Study on Usability and User Experience: Conducting a user study or survey
to gather feedback on the usability and user experience of implementing ASCON in real-
world Industry 4.0 applications should be considered. Incorporating user perspectives
will provide insights into the practical implications and usability challenges of ASCON
implementations.

8. Conclusions

In conclusion, our research addresses a critical void in the realm of security mecha-
nisms designed for Digital Twin applications within Industry 4.0. The existing literature
lacks in-depth discussions and recommendations for security solutions that can effectively
balance the demands for both speed and security within the constraints of Industry 4.0’s
Digital Twin ecosystem, especially considering the limitations of IoT devices. To bridge this
gap, our study introduced an innovative communication scheme utilizing the lightweight
authenticated encryption with associated data (AEAD) algorithm, ASCON. This solution
not only fulfills but surpasses crucial requirements for confidentiality, integrity, and au-
thenticity while operating within the confines of resource limitations. A proof of concept
involving the MQTT protocol validates the practicality of our approach, demonstrating
its applicability in real-world scenarios. Moreover, our performance analysis, comparing
ASCON to conventional AES (AES-GCM), unequivocally demonstrates the efficiency gains
achieved in terms of speed, memory utilization, and power consumption, all while main-
taining robust 128-bit security levels. This research makes a significant contribution by
effectively addressing security challenges in Digital Twin applications for Industry 4.0, har-
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monizing with the unique constraints of sensor devices. Moving forward, future research
should focus on the optimization and comprehensive validation of the proposed solution
across various real-world scenarios, ensuring its enduring applicability and resilience in
safeguarding critical infrastructures and beyond. Specifically, attention could be directed
towards exploring the customization of lightweight encryption algorithms, such as ASCON,
tailored for specific microprocessors like ESP32. This entails identifying CPU instructions
requiring fewer cycles and replacing those in the reference implementation that demand
more for the same operation. Additionally, there is a need to develop secure remote access
control solutions specifically tailored for resource-constrained devices in Industry 4.0. A
promising avenue for future work involves exploring the authenticated encryption with
associated data (AEAD) family of lightweight algorithms, offering potential solutions for
secure remote access to sensors and actuators deployed in industrial zones. By delving into
these directions, researchers can further enhance the security landscape of Industry 4.0,
ensuring the protection of critical infrastructures while adapting to the evolving demands
of the digital era
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